

The Search for Gene*Environment Interactions in Parkinson's Disease

Samuel M. Goldman, MD, MPH Emeritus Professor Division of Occupational, Environmental, and Climate Medicine & Department of Neurology University of California San Francisco

Disclosures: None

Parkinson Disease

<u>Clinical Syndrome</u>: *Parkinsonism* Bradykinesia, resting tremor, rigidity, postural reflex impairment

<u>Neural substrate</u>: Nigrostriatal system, disrupted dopaminergic transmission

Akinesia Loss of **Postural Reflexes**

PD Pathology: Loss of Pigmented Dopaminergic Neurons in the *substantia nigra pars compacta*

Synuclein pathology in _ myenteric plexus Synuclein pathology in olfactory bulb

Parkinson's Disease: Overview

- Most common cause of parkinsonism
- Depicted in ancient texts:
 - Maimonides 1200s Spain
 - "kampavata" in Indian Ayurveda
- Described by James Parkinson 1817
- Affects ~ 1 million in U.S.
- ~ 2% prevalence > 65 years of age
- Men > Women
- Whites > Blacks

Van den Eeden et al, Am J Epi, 2003

The Global Burden of PD: Projected Increases

Change in number of people with PD in the world's most populous nations from 2005 to 2030

Dorsey et al, Neurology 2007;68:384-6; Dorsey et al, JPD 2018;S3-S8.

Projected global burden of PD

PD Genetics vs. Environment Debate

"...paralysis agitans is not a family disease" Charcot, 1877

"Many patients with the disease have a strong family history..." Gowers, 1888

PD Age-Adjusted Incidence Is Increasing

Parkinson's disease incidence in Olmstead County, MN 1976-2005

<u>Increase per decade</u> Men: 26% Women: 12%

Savica et al, JAMA Neurol, 2016

Twins: Nature's Controlled Study

NAS/NRC WWII VETERAN TWINS ROSTER 31,848 TWINS BORN 1917 - 1927

Tanner, et al, JAMA 1999; Goldman, et al, Ann Neurol 2019

- Identical twins share 100% of genes
- Fraternal twins share ~ 50% of genes

Hypothesis: If PD is primarily genetic, MZ concordance should be >> DZ concordance

Results: Similar concordance in MZ & DZ twin pairs 80% Heritability \leq age 50 19% Heritability > age 50

Conclusion:

- Environment is the major contributor to typical PD
- 13% concordance in DZ twins is 3x higher than typical sibs: shared early environment!

Name This Disease

Mechanism of MPTP Toxicity

Figure 1

Mechanism of MPTP toxicity. Abbreviations: ATP, adenosine triphosphate; BBB, blood-brain barrier; MAO-B, monoamine oxidase B; MPP⁺, 1-methyl-4-phenylpyridinium; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; OCT3, organic cation transporter 3; ROS, reactive oxygen species.

- Pesticides & PD
- Pesticide use associated in >50 studies worldwide
- Specific compounds rarely studied

Van der Mark et al, EHP, 2012

FAME Study: PD in Agricultural Health Study Tanner, et al, EHP, 2011

- Professional pesticide applicators (mostly farmers) & spouses
- 110 PD cases, 358 controls
- Asked about use of 31 specific pesticides
- Very good historians!
- Only 2 pesticides significantly associated

Pesticide	PD Risk	P-value
Rotenone	2.8	0.005
Paraquat	2.5	0.004

Common Toxic Mechanisms

	MPTP	Paraquat	Rotenone
Mitochondrial poison	+	+	+
Oxidative stress	+	+	+
Generates an animal model of PD	+	+	+

Solvents & Parkinson's Disease?

- Acute solvent intoxications can cause parkinsonism
 - Methanol, n-hexane, hydrocarbon mixtures....
 - Carbon disulfide in rubber and rayon manufacturing (Delpech, 1850s; Hamilton, 1930s)
- Associations with *Parkinson's Disease not* consistent
- Specific solvents rarely studied

A PD Cluster

Gash et al, Ann Neurol, 2008

- Small Kentucky industrial plant with 30 employees
- PD in 3 co-workers
- mild parkinsonian signs/symptoms in 14 others
- Open vapor-degreasing vat containing trichloroethylene (TCE)

Occupational Solvent Exposures in PD-Discordant Twins Goldman, Tanner, et al, Ann Neurol, 2012

- 99 male twin pairs discordant for PD
- Lifelong job-task-specific occupational history
- Exposure assigned by industrial hygienist unaware of case status

Compound	Odds ratio ever/never	95% Confidence Interval	p-value
N-hexane	1.3	0.40-4.1	0.69
Toluene	1.3	0.49-3.3	0.61
Xylene	2.2	0.43-12	0.34
CCl ₄	2.3	0.88-6.1	0.088
ТСЕ	6.1	1.2-33	0.034
PCE	10.5	0.97-113	0.053

Oral TCE causes <u>selective</u> dose-related degeneration of dopaminergic neurons in rat substantia nigra

Liu, et al, J Neurochem, 2010

TaClo forms spontaneously in rat brain after TCE dosing *Liu, et al, Mol Neurobiol, 2017*

*1-trichloromethyl-1,2,3,4-tetrahydro-β-carboline

Camp Lejeune, NC

History

- 1953 onward: wells contaminated with TCE (on-base dumping), PCE (off-base dry-cleaner)
- 1987: Contaminants discovered, wells closed
- 1989: EPA Superfund site

Median water levels 1975-85 (EPA MCLs 5ug/l): TCE 366 ug/l; PCE 85 ug/l

<u>Sources of exposure</u>: Drinking water (oral), cooking (oral, inhalation), bathing (inhalation, dermal), swimming/recreation (inhalation, dermal)

JAMA Neurology | Original Investigation

JAMA Neurol. doi:10.1001/jamaneurol.2023.1168 Published online May 15, 2023.

Risk of Parkinson Disease Among Service Members at Marine Corps Base Camp Lejeune

Samuel M. Goldman, MD, MPH; Frances M. Weaver, PhD; Kevin T. Stroupe, PhD; Lishan Cao, MS; Beverly Gonzalez, PhD; Kalea Colletta, DO; Ethan G. Brown, MD; Caroline M. Tanner, MD, PhD

- Cohort established by Agency for Toxic Substances and Disease Registry (ATSDR)
- All servicemembers stationed during 1975-1985 at:
 - Camp Lejeune, NC (water contaminated), n=172,128
 - Camp Pendleton, CA (water uncontaminated), n=168,361
- VHA & Medicare (1999-2021) ICD code search: inpatient, outpatient, pharmacy
- Diagnoses validated by review of all medical records (n > 1500)

Results: PD risk

- 430 PD cases ascertained: 398 diagnosed in VHA EMR; 32 Medicare data only
- 57 other neurodegenerative parkinsonism (no differences between camps)

	n	PD n (%)	Adjusted OR (95%CI)
Lejeune	84,824	279 (0.33)	1.70 (1.39-2.08)
Pendleton	73,298	151 (0.21)	Ref

• Prodromal diagnoses also more common in Lejeune (tremor, olfaction, ED....)

TCE (trichloroethylene)

Common exposures since the 1920s

- Degreasing metal parts (85%), computer circuits
- Dry-cleaning
- Surgical anesthetic (until 1977)
- Decaffeinated coffee (until 1977)
- Typewriter correction fluids, adhesives, paints, carpet cleaners, spot removers.....

Most frequently reported organic contaminant in groundwater: detected in up to 33% of US water supplies

Subsurface "plumes" common, with vapor intrusion into homes through foundations

Mountain View

Dayton

Brooklyn

Toxicants Associated with PD: Mechanistic & Structural Similarity

PD Environmental Associations

Increased Risk

Head trauma Diet: dairy products, animal fats **Environmental exposures** MPTP Pesticides (paraquat, rotenone, others) Industrial agents (PCBs) Solvents (TCE, PERC) Metals (lead, iron) **Rural residence** Drinking well water Occupations: health care, teaching, carpentry, lawyer, clergy, farming

Reduced Risk

Cigarette smoking Coffee and tea drinking Diet "Mediterranean" diet polyunsaturated fats uricogenic diet Physical activity Medications Calcium-channel blockers NSAIDs Statins

Mendelian variants are rare causes of PD. Individually, most common variants impart very modest increases in risk.

From Brockmann & Gasser, 2015, in Parkinson's Disease & Movement Disorders, Jankovic & Tolosa eds

Meanings of the Term "Interaction" in Epidemiology

Biological interaction:

- act on the same or intersecting pathophysiologic pathways
- may involve multiple environmental, genetic, epigenetic factors
- this is what we really care about and hope to measure

Statistical interaction:

- deviation of a model from the expected joint effects of two or more factors
- this is what we actually measure in epi studies

Gene-Environment Interaction in Epidemiologic Studies

Environment association, no genotype association

Environment association, genotype association: no interaction

Genotype association, no environment association

Environment association, genotype association: Synergistic statistical interaction

Challenges in Studying Gene-Environment Interactions

- Biological:
 - Mechanistic effects of genes & exposures often poorly understood
 - "Pathways" likely more relevant than single genes
 - Environmental exposures don't occur in isolation
- Epidemiological:
 - PD is difficult to diagnose
 - Exposure measurements imprecise, highly variable across studies
 - Population heterogeneity may limit replication
- Statistical: sample size!
 - Allele prevalence = 0.1, exposure prevalence = 0.1
 - Odds ratio of interaction = 4 (this is high!)
 - ~ 700 cases & 700 controls needed for 80% power

Practical Examples of G*E: Pharmacogenetics

- Pythagoras noted that some persons became ill after eating fava beans (hemolytic anemia in G6PD deficiency)
- Numerous modern examples:
 - Isoniazid * *NAT2*: peripheral neuropathy, hepatitis
 - Anti-depressant * CYP2D6: efficacy/toxicity
 - Anti-neoplastics * *ABCB1*: efficacy/toxicity
- Due to variation in "ADME" genes: absorption, distribution, metabolism, excretion

Some Potential Biological Mechanisms of Gene * Environment Interaction

Toxicant

- Transporters (OCT3)
- Metabolism (*CYP2D6*)
- Injury Protection (SOD1)
- Injury Response (COX2)
- Repair/plasticity (BDNF)
- Protein expression (SNCA)

Absorption Distribution Metabolism Excretion

Example 1: Gene*Environment Interaction in PD

<u>Gene</u>: SNCA (alpha synuclein) <u>Environment</u>: Head injury

In rodent, SNCA Rep1 expansion increases α -synuclein expression in brain

Cronin, et al, Human Molecular Genetics, 2009

Rodent Models of Moderate Head Injury

Percussive TBI increases α -synuclein immunoreactivity and kills dopaminergic neurons in mouse striatum

Uryu, et al, Experimental Neurology, 2003

Does SNCA Rep1 length modify the effect of head injury on PD risk?

Head Injury & SNCA Rep1 length Goldman, Tanner et al, Ann Neurol, 2012

• Study population: 2 large case-control studies (n=964)

Example 2: Gene*Environment Interaction in PD

<u>Gene</u>: *GSTT1* (glutathione-S-transferase T1) <u>Environment</u>: Paraquat

Paraquat and GSTT1 Gene

Goldman, Tanner, et al, Movement Disorders, 2012

- Paraquat: animal model, redox-cycling, oxidative stress, associated in several human studies
- Glutathione-S-transferase T1: anti-oxidant, glutathione reduced in PD, 20% homozygous null

Example 3: Environment in a genetically at-risk cohort

<u>Gene</u>: *LRRK2* <u>Environment</u>: NSAIDs

NSAIDs & LRRK2-PD San Luciano et al, Movement Disorders, 2020

• All participants (n=577) carry *LRRK2* mutations (30% penetrant)

- Regular NSAID use (at least twice weekly > 6 months) prior to index date
- Is NSAID use associated with penetrance?

Regular Use of NSAIDs					
NSAID	OR	95%CI	р		
Any NSAID	0.38	0.21-0.67	< 0.001		
Ibuprofen	0.19	0.07-0.50	< 0.001		
Aspirin	0.79	0.38-1.67	0.5		

G*E Associations in PD

Exposure	Gene	Risk variant ^{&}	Design for interaction	PD	СТ	Interaction (<i>p</i>)	Joint effect
Pesticides	A D C D1			415			OR [95% CI] or (SE)
	ABCB1	rs1045642 C>T, p.Ile1145Ile	Case-only	415	_	_	4.74 [1.01-22.31]
Organochlorines	ABCB1	rs2032582 G>[A,T], p.Ser893Ala/Thr	Case-only	207	_	_	5.4 [1.1–27.5]*
Organophosphorus	ABCB1	rs1045642 C>T, p.Ile11451le rs2032582 G>[A,T], p.Ser893Ala/Thr	Case-control	350	724	NA	1 allele 2.1 [1.3–3.2]* Both alleles 3.7 [2.0–7.0]*
Diazinon Chlorpyrifos	PON1	rs854560 T>A, p.Leu55Met (SM)	Case-control	351	363	NA	2.2 [1.1–4.5] 2.6 [1.3–5.4]
Organophosphates	PON1	rs854560 T>A, p.Leu55Met (SM)	Case-control	357	807	NA	2.62 [1.4-4.8]
Pesticides	CYP2D6	rs3892097 G>A, null allele (PM)	Case-control	190	419	0.02	4.74 [1.29-17.45]
Pesticides	CYP2D6	rs3892097 G>A, null allele (PM)	Case-control	393	389	0.05	8.41 [1.01-69.76]
Caffeine	CYP1A2	rs762551 C>A	Case-control	0.25	1240	0.05	0.33 [0.16-0.68] ^{\$}
Callellie	CIPIAZ	rs2470890 C>T, p.Asn516Asn	Case-control	925	1249	0.04	0.43 [0.27-0.69] ^{\$}
Paraquat	GSTT1	Null allele	Case-control	87	343	0.027	11.1 [3.0-44.6]
Solvents	GSTM1	Null allele	Case-only	959	_	_	2.34 [1.08-4.62]
Smoking	GSTP1	GSTP1*C haplotype	Case-only	400	—	—	2 [1.11-3.60]
Pesticides	SLC6A3	5' A clade and 3' VNTR 9-repeats	Case-control	178 men	239 men	0.02	5.66 [1.73-18.53]*
Paraquat, maneb	SLC6A3	5' A clade and 3' VNTR 9-repeats	Case-control	324	334	< 0.001	4.53 [1.70-12.09]
Smoking	MAO-B	rs1799836 A>G	Case-control	82	118	NA	0.24 [0.10-0.55] ^{\$}
Pesticides	MnSOD NQO1	rs4880 T>C p.Val16Ala rs1800566 C>T p.Pro153Ser	Case-control	153	155	< 0.001	2.49 [1.18–5.26] 2.42 [1.16–4.76]
		rs12829185 T>C				0.034	3.12 [1.71–5.71] ^{\$}
Pesticides	NOS1	rs10774910 T>C	Case-control	156	174	0.026	4.15 [1.85–9.34] ^{\$}
		rs2682826 A>G				0.028	3.52 [1.78–6.95] ^{\$}
		rs2314810 G>C				0.024	0.56 [0.34-0.92]\$
Smoking	NOS2A	rs2248814 A>G	Case-control	179	204	0.021	0.23 [0.09-0.59] ^{\$}
		rs1060826 T>C				0.013	0.17 [0.06-0.49] ^{\$}
Caffeine	GRIN2A	rs4998386 C>T	GWAIS + replications	2472	2848	3×10^{-5}	0.41 (0.05)
Caffeine	GRIN2A	rs4998386 C>T	Case-control	193	377	< 0.001	0.38 [0.20-0.70]

Polito, et al, Parkinson's Disease, 2016

Causation: What determines "penetrance" in the individual?

Disease: A Broken Wrist

Sufficient cause 1: A = stairs B = ice C = osteoporosis D = porch light burned out Sufficient cause 2: A = stairs B = ice E = high heels F = alcohol

Predicting Individual Risk for PD

- DoD funded ongoing work
- FAME study of professional pesticide applicators
 - Whole-genome sequencing
 - Gene burden tests of deleterious rare variants
 - Exposed-only analyses identify genes interacting with paraquat, rotenone, permethrin, dieldrin
 - Machine learning to derive pesticide-specific cumulative interaction risk scores
- CRISPR to knock down suspect genes in iPS-derived dopamine neurons
 - Test neuron sensitivity to the specific pesticides

ML-based gene-burden tests with Rotenone

• Highest importance gene*E

CYP1B1	0.150696
GLRX	0.053897
CTNS	0.049122
ABCB1	0.04593
NQO1	0.044611
CEP68	0.030758
CYP2S1	0.03039
NXN	0.029461
TXNDC11	0.028275
ABCB11	0.025

 ROC AUC predictive accuracy: 0.83

Current Directions for G*E Studies of PD

- Old-school hypothesis-driven "candidate" mechanistic approaches
- Genome-wide gene-environment studies (GEWIS)
 - Power is a major limitation
 - Exposure data rarely collected or inconsistent quality
- GWAS in exposed populations (e-GEWIS): ongoing work in our group
 - Can validate in vitro
- EWAS in populations defined by G
 - How E affects penetrance of Mendelian forms (e.g., NSAIDS in LRRK2-PD)
 - Can extend to animal models
- Individual susceptibility
 - Burden tests, ML

Our Collaborators

UCSF & SFVAMC Carlie Tanner Ethan Brown Marta San Luciano Patricia Quinlan Kathleen Comyns Cheryl Meng Monica Korell Farah Kausar **Raymond Swanson** VA Pacific Islands Healthcare G. Webster Ross Helen Petrovitch Robert Abbott German Center for Neurodegenerative Diseases (DZNE) Sarah Jewell Dino DiMonte **Toronto Western Hospital** Connie Marras Anthony Lang Univ of Lübeck Meike Kasten

Gladstone Institute Julia Kaye Steve Finkbeiner Leandro Lima Kaiser Permanente DOR Stephen Van Den Eeden Kathleen Albers NIEHS Freya Kamel Jane Hoppin David Umbach Marie Richards **Dale Sandler** Stanford University Lorene Nelson J. William Langston **Birgitt Schüle** James Tetrud **Columbia University** Ruth Ottman **Richard Mayeux** Karen Marder

Capital Univ Med Sci Piu Chan Kitty Gu **Favaloro University** Anabel Chade **Buddhist Tzu Chi Hospital** Ravmond Lo University of Pennsylvania Jonas Ellenberg IND Kenneth Marek University of Rochester David Oakes **Ray Dorsey** Hines VA Frances Weaver **Kevin Stroupe** Lishan Cao **Beverly Gonzalez** Kalea Colletta NCI **Aaron Blair** NIA **Andrew Singleton**

